Effects of sevoflurane on leucine-rich repeat kinase 2-associated Drosophila model of Parkinson's disease.
نویسندگان
چکیده
Patients with Parkinson's disease (PD) often require surgery, and therefore may receive inhalation anesthesia. However, it is currently unknown whether inhalation anesthetics affect the prognosis of the disease. Leucine‑rich repeat kinase 2 (LRRK2) genetic mutations are the most common cause of familial PD, contributing to ~39% of all cases in certain populations. The aim of the present study was to determine the effects of inhaled anesthetics on PD, by observing the influence of sevoflurane on a LRRK2‑associated Drosophila model of PD. PD transgenic Drosophila overexpressing LRRK2 were generated by crossing flies expressing an LRRK2 upstream activation sequence, with tyrosine hydroxylase (TH)‑Gal4 flies. Western blot analysis successfully verified that the transgenic Drosophila overexpressed LRRK2. Three days prior to eclosion, three genotypes of Drosophila were divided into four groups, and were exposed to air, 1, 2, or 3% sevoflurane, for 5 hours. Twenty‑four hours after the exposure, the electrophysiological activities of the projection neurons (PN) in the brains of the Drosophila were recorded using a patch clamp. The locomotor activities were tested on days 5, 10, 15, 20, 25, 30, 35 and 40 following eclosion. The frequency of miniature excitatory synaptic currents (mEPSCs) obtained from the PNs of the TH‑wild type LRRK2 (TH‑WT) Drosophila brain, following exposure to air (1.60±0.05 Hz), was lower as compared with the wild type LRRK2 (WT) (2.51±0.07 Hz) and W1118 (2.41±0.10 Hz) Drosophila. After exposure to 1, 2 and 3% sevoflurane, the frequency of mEPSCs in the brains of the TH‑WT group decreased to 0.82±0.04 Hz, 0.63±0.16 Hz and 0.55±0.04 Hz, respectively. The percentage decrease of the frequency of mEPSCs, from exposure to air to 1% sevoflurane, of the TH‑WT group (48.32%±3.08%) was significantly higher, as compared with the WT (39.17%±1.42%) and W1118 (35.10%±2.66%) groups, and there was no statistical difference between the WT and W1118 groups. The transgenic TH‑WT Drosophila presented an early decrease in locomotor ability, as compared with the WT and W1118 groups. Following a 5 hour exposure to sevoflurane, the percentage decrease of the climbing abilities of the TH‑WT group, from exposure to air to 1% sevoflurane, were significantly lower, as compared with the WT and W1118 groups. In conclusion, sevoflurane had negative effects on the control W1118 flies, and also severely aggravated the prognosis of PD in the LRRK2‑associated Drosophila model, through synaptic cholinergic deficits and impairment on locomotor abilities.
منابع مشابه
Antioxidants inhibit neuronal toxicity in Parkinson's disease-linked LRRK2.
Mutations in leucine-rich repeat kinase-2 are the most common cause of familial Parkinson's disease. The prevalent G2019S mutation increase oxidative, kinase and toxic activity and inhibit endogenous peroxidases. We initially screened a library of 84 antioxidants and identified seven phenolic compounds that inhibited kinase activity on leucine-rich repeat kinase-2 substrates. The representative...
متن کاملInhibitors of leucine-rich repeat kinase 2 (LRRK2): progress and promise for the treatment of Parkinson's disease.
Mutations in the gene for leucine-rich repeat kinase 2 (LRRK2) have been linked to several familial and sporadic late-onset cases of Parkinson's disease. The cumulative data for the effects of mutant forms of this enzyme on neuronal degradation and the pathophysiology of Parkinson's disease create a compelling case for drug discovery based on inhibition of the mutant forms of LRRK2. This review...
متن کاملParkinson's Disease: Leucine-Rich Repeat Kinase 2 and Autophagy, Intimate Enemies
Parkinson's disease is the second common neurodegenerative disorder, after Alzheimer's disease. It is a clinical syndrome characterized by loss of dopamine-generating cells in the substancia nigra, a region of the midbrain. The etiology of Parkinson's disease has long been through to involve both genetic and environmental factors. Mutations in the leucine-rich repeat kinase 2 gene cause late-on...
متن کاملCerebral pathological and compensatory mechanisms in the premotor phase of leucine-rich repeat kinase 2 parkinsonism.
Compensatory cerebral mechanisms can delay motor symptom onset in Parkinson's disease. We aim to characterize these compensatory mechanisms and early disease-related changes by quantifying movement-related cerebral function in subjects at significantly increased risk of developing Parkinson's disease, namely carriers of a leucine-rich repeat kinase 2-G2019S mutation associated with dominantly i...
متن کاملInhibitor treatment of peripheral mononuclear cells from Parkinson’s disease patients further validates LRRK2 dephosphorylation as a pharmacodynamic biomarker
Activating mutations in leucine-rich repeat kinase 2 (LRRK2) are strongly associated with increased risk of Parkinson's disease (PD). Thus, LRRK2 kinase inhibitors are in development as potential Parkinson's disease therapeutics. A reduction in the constitutive levels of phosphorylation on leucine-rich repeat kinase 2 (LRRK2) is currently used to measure target engagement of LRRK2 kinase inhibi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular medicine reports
دوره 11 3 شماره
صفحات -
تاریخ انتشار 2015